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Abstract
The aim of this study was to investigate the underlying hepatoprotective effects 
of yeast culture (YC) against carbon tetrachloride (CCl4)-induced hepatic damage in 
Pseudobagrus ussuriensis. The fish were randomly divided into three experimental 
groups (Control, CCl4 and YC+CCl4) with three replicates of 30 fish in each replicate. 
Firstly, the Control and CCl4 groups were fed basal diet without yeast culture, and the 
YC+CCl4 group was fed diet with 20 g/kg YC for 8 weeks. After the end of feeding 
experiment, Control group was intraperitoneally injected olive oil with 0.05 ml/15 g 
fish body weight, while CCl4 and YC+CCl4 groups were intraperitoneally injected CCl4 
olive oil solution (CCl4: olive oil = 3:7) with 0.05 ml/15 g fish body weight for 48 h. The 
results indicated that fish fed with 20 g/kg yeast culture not only ameliorated injured 
hepatic cell, as evidenced by well-preserved liver architecture, but also significantly 
decreased plasma AST activity in the CCl4-induced hepatic injury model. Next, we 
found that dietary 20 g/kg YC supplementation could improve hepatic antioxidant 
activity and inhibit lipid peroxidation induced by CCl4. Fish fed 20 g/kg YC could sup-
press the decrease of plasma IgM and plasma ACH50 content caused by CCl4 (p < .05). 
In addition, we also found that fish treated with CCl4 up-regulated the expression of 
immune-related genes (TLR2, MyD88 and NF-κBp65), proinflammatory cytokines (IL-
1β and IL-8) and Hsp70 mRNA expression in liver compared with the Control group; 
meanwhile, fish fed with 20 g/kg YC down-regulated the above-mentioned genes ex-
pressions in liver compared with CCl4 group. In general, the results mentioned above 
suggested that the dietary yeast culture could relieve the oxidative stress, immune 
damage and liver injury induced by CCl4 and could also suppress CCl4-induced inflam-
mation through inhibiting the TLR2/NF-κB signalling pathway.
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1  |  INTRODUC TION

Liver is an important organ that may regulate various physiochemical 
functions including synthesis, secretion and metabolism of xenobi-
otics. Damage to the liver may lead to these physiochemical function 
disorder. Many risk factors in aquaculture may induce such damage, 
including environmental pollution and the abuse of antibiotics and 
pesticides. At present, there are few breakthroughs in the preventive 
and control of fish liver damage (Yin et al., 2011). Therefore, research 
identifying improve hepatic damage agents is urgently necessary. 
And the hepatic injury models induced by chemical substances were 
often used to investigate its pathogenesis and the underlying pro-
tective effect of drugs. These chemical substances mainly include 
carbon tetrachloride (CCl4), alcohol, acetaminophen (Jaeschke et al., 
2011) and thioacetamide (Ming et al., 2006). Presently, carbon tet-
rachloride (CCl4) is widely used as a well-established hepatic injury 
model chemical with the merits of convenient accessibility, easy 
model making and little damage to other organs. Previous reports 
demonstrated that the metabolites of CCl4 such as toxic trichloro-
methyl free radical (•CCl3) and trichloromethyl peroxyl (•OOCCl3) 
free radicals may lead to severe damage to the function and struc-
ture of liver cells in the grouper and jian carp (Cyprinus carpio var. 
Jian) (Al-Harbi et al., 2014; Cao et al., 2015; Singh et al., 2008; Sun 
et al., 2019). Therefore, researchers always used carbon tetrachlo-
ride (CCl4) as a classic liver hepatotoxicant to gain an insight into the 
pathophysiological processes in aquaculture (Zou et al., 2018).

In recent years, it is gaining increasing attention that probiotics 
was used as dietary supplements for the improvement of liver dam-
age and diseases in animals. (Ayiku et al., 2020; Banerjee & Ray, 2017; 
Bu et al., 2019; Kong et al., 2020). Yeast culture (YC) a member of 
probiotic family possesses many immunomodulatory constituents (β-
glucan, nucleotide and mannose oligosaccharide) and antioxidant sub-
stances (B-vitamin, glutathione) (Jensen et al., 2008; Liu et al., 2004; 
Xiong et al., 2017), respectively. Previous studies have demonstrated 
that yeast culture or yeast hydrolysate as dietary supplements could 
improve growth performance, immune response, intestinal health, 
antioxidant capacity and disease resistant in aquatic animals (Ayiku 
et al., 2020; Bu et al., 2019; Cheng et al., 2019; Jin et al., 2018; Zhang 
et al., 2018). The above-mentioned positive effect was probably at-
tributed to the β-glucan and mannose oligosaccharide in YC, which 
could inhibit the colonization of pathogens in the intestine, improve 
the structure of intestinal flora. In addition, β-glucan as immune reg-
ulatory ligand could co-act with immune-receptors such as Toll-like 
receptors (TLRs) to elicit a series of immune cells containing dendritic 
cells, macrophages, monocytes, natural killer cell and neutrophils 
resulting in various immune responses (Dalmo & Bøgwald, 2008; 
Goodridge et al., 2009). TLRs identified as a mediator of inflammatory 
response may associate with their corresponding adaptor molecules 
myeloid differentiation factor 88 (MyD88) to active downstream sig-
nal, eventually stimulate the transcription of nuclear factor κB (NF-
κB), thereby inducing the expression of proinflammatory cytokines 
such as interleukin-1β (IL-1β) and interleukin-8 (IL-8) (Sun et al., 2017; 
Thompson & Locarnini, 2007; Zhang et al., 2017). TLR2 plays a crucial 

role in innate initiating immune responses and influences subsequent 
adaptive immune responses (Fan et al., 2015). Growing number of 
researches have proved that the liver damage induced by CCl4 may be 
correlated with the up-regulation of TLR2/NF-κB signalling pathway 
(Gan et al., 2018). And the inhibition of this pathway by dietary yeast 
culture supplementation could alleviate liver injury and inflammatory 
response induced by gossypol in Pseudobagrus ussuriensis (Bu et al., 
2019). Nevertheless, it is still lack of enough information about the ef-
fectiveness and the associated mechanisms of YC as dietary additives 
to relieve hepatic damage.

Pseudobagrus ussuriensis is an important indigenous species in 
China and East Asia because of its great economic value and better 
productive performance. However, this fish is facing the problem of 
immune suppression and liver damage with the development of in-
tensive farming. To date, some experiments about dietary nutrition 
requirement of this fish have been conducted and the effect of dif-
ferent vegetable protein (soybean meal, vegetable meal, cotton meal 
and corn protein) and animal protein (meat and bone meal, mussel 
meal) replacing fish meal had been studied in our laboratory (Bu et al., 
2017; Luo, 2019; Wang et al., 2020). Moreover, a preliminary study 
about the health function of YC on Pseudobagrus ussuriensis has been 
explored (Bu et al., 2019). But little information is available on YC 
against liver damage of Pseudobagrus ussuriensis. Thus, the objectives 
of this study were to investigate the effects of dietary yeast culture 
against CCl4-induced liver damage in Pseudobagrus ussuriensis.

2  |  MATERIAL AND METHODS

2.1  |  Reagents

Yeast culture was purchased from Beijing Enhalor International Tech 
Co., Ltd. (Beijing, China). CCl4 (analytical grade) was purchased from 
Sinopharm Chemical Reagent Co., Ltd (Shanghai, China) and dis-
solved in olive oil to generate CCl4 solution (CCl4: olive oil = 3: 7).

2.2  |  Diets and feeding management

To investigate the underlying protective mechanism of yeast cul-
ture against CCl4 challenge, growth experiment was conducted 
ahead of the CCl4 challenge trial. The basal diet and experimental 
diet with 20  g/kg yeast culture were formulated (Table 1), and 
referred as control and YC, respectively. The diet was produced 
according to the method described by Bu et al. (2019) and stored 
at −20°C until used. The diets ingredients were determined based 
on AOAC procedures. And the dry matter of diet was measured 
by desiccation at 105°C until constant weight. Crude protein was 
measured by Auto Kjeldahl System (2300-Auto-analyzer; FOSS, 
USA) according to the Kjeldahl method. Crude lipid was meas-
ured using Soxhlet extraction. Ash was measured by placing the 
sample in a muffle furnace at 550°C for 24 h. Gross energy was 
measured by the adiabatic bomb calorimeter (Parr 6300, USA).
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Fish were obtained from Fisheries Research Institute of Harbin 
Academy of Agricultural Sciences (Harbin, China), and were fed the 
control diet for 2 weeks to acclimate to the experimental diets before 
starting the feeding trial. After fasting for 24 h, the fish randomly 
allotted to three groups (Control, CCl4 and YC+CCl4) in triplicate 
(1.0  ×  0.5  ×  0.8  m, water depth 50–60  cm) with 30 fish to each 
aquarium. The Control and CCl4 groups were fed control diet, and 
YC+CCl4 group were fed YC diet. All fish were hand-fed two times 
(08:30 and 16:30) a day to apparent satiation for 8 weeks. During 
the experimental period, the flow rate of water in each tank was 
maintained at 2.4 L min−1 and the water conditions were dissolved 
oxygen >6 mg L−1, temperature 24 ± 1°C pH7.0 ± 0.5, respectively. 
The experimental photoperiod was set at 12-h light and 12-h dark.

2.3  |  CCl4 challenge and Sample collection

After the 8-week feeding trial, the fish in each tank were weighed 
and collected for CCl4 challenge. Fish in the Control group were 
intraperitoneally injected with olive oil (0.05 ml/15 g bodyweight) 
for 48 h. Fish in CCl4 and YC+CCl4 groups were intraperitoneally in-
jected with CCl4 solution (0.05 ml/15 g bodyweight) for 48 h. At the 
end of challenge trial, three fish from each tank were anaesthetized 
with eugenol (1:12,000) (Shanghai Reagent Corporation, Shanghai, 
China) and used for the collection of blood and liver samples. The 
blood samples were collected via caudal vein into tubes containing 
32 g/kg sodium citrate and then centrifugated at 4000 g for 10 min 
and stored at −80°C until used. The liver was immediately frozen in 
liquid nitrogen and stored frozen at −80°C until analysed.

2.4  |  Liver histology

One portion of liver tissue per fish was obtained and stained accord-
ing to the method of Chunhua and Hongyan (2017). The slides were 
stained with the conventional haematoxylin–eosin (HE) protocol, 
mounted with neutral resin and examined with optical microscopy.

2.5  |  Plasma biochemical index

The alanine transaminase (ALT), aspartate transaminase (AST), 
alkaline phosphatase (AKP), albumin (ALB) and lysozyme (LZM) 
were determined by commercial reagent kits (Nanjing Jiancheng 
Bioengineering Institute, China). The plasma immunoglobulin M 
(IgM) and alternative complement pathway activity (ACH50) level 
were measured by the kit of enzyme-linked immunosorbent assay as 
described by Yu et al. (2014).

2.6  |  Hepatic antioxidant status analysis

Liver tissues were homogenized and centrifuged according to the 
method of Bu et al. (2019). Superoxide dismutase (SOD) and glutathione 
peroxidase (GPX) activities, and hepatic malondialdehyde MDA content 
were determined using commercial kits according to the instructions of 
the kit (Nanjing Jiancheng Bioengineering Institute, China).

2.7  |  Real-time polymerase chain reaction 
(PCR) analysis

The total RNA from each liver was extracted with TransZol Up Plus Kit 
(TransGen Biotech, China) according to the manufacturer's instruc-
tions. The quantity and concentration of RNA were measured on an 
ultra-micro spectrophotometer (Implen, Germany), respectively. The 
cDNA was synthesized using TransScript® One-Step gDNA Removal 
and cDNA Synthesis SuperMix (TransGen Biotech, China) according 

TA B L E  1  Formulation and chemical composition of the test diet 
(g kg−1 dry matter)

Ingredients

Diet Diet

Control YC

Fish meala  280 260

Soybean mealb  300 300

Cottonseed mealc  110 110

Corn gluten meald  70 70

Wheat meal 164 164

Soybean lecithin 10 10

Soybean oil 33 33

Vitamin premixe  5 5

Mineral premixf  5 5

Choline 3 3

Ca(H2PO4)2 20 20

Yeast culturedg  0 20

Proximate composition (g kg−1 dry matter)

Dry matter 932.7 928.0

Crude protein 458.3 455.5

Crude lipid 77.7 76.4

Gross energy (kJ g−1) 184.9 186.0

Ash 121.3 115.3

aFish meal: crude protein: 645.0 g kg−1, crude lipid: 85.0 g kg−1.
bSoybean meal: crude protein: 467.9 g kg−1, crude lipid: 31.4 g kg−1.
cCottonseed meal: crude protein: 482.0 g kg−1, crude lipid: 14.7 g kg−1.
dCorn gluten meal: crude protein: 602.0 g kg−1, crude lipid: 14.7 g kg−1. 
These ingredients were supplied by Huada feed Co., Ltd. (Harbin, 
China).
eVitamin premix (IU or mg kg−1 dry diet): retinol (VA) 3000 IU; 
cholecalciferol (VD) 1500 IU; tocopherol (VE) 40 mg; menadione 
(VK) 4.5 mg; thiamin (VB1) 8 mg; riboflavin (VB2) 8.5 mg; pyridoxine 
(VB6) 6.5 mg; cyanocobalamin (VB12) 0.02 mg; nicotinic acid 45 mg; 
nicotinamide 45 mg; D-Ca pantothenate 17 mg; inositol 40 mg; biotin 
0.15 mg; folic acid 1.3 mg; antiscorbic acid 110 mg.
fTrace mineral mixture use providing the following concentration (mg 
kg−1 dry diet): copper 6.5 mg; iron 45 mg; selenium 0.35 mg; zinc 70 mg; 
manganese 8.5 mg; magnesium 100 mg; cobalt 1 mg; iodine 1.2 mg.
gYeast culture: crude protein: 487.0 g kg−1, crude lipid: 42.1 g kg−1, 
supplied by Beijing Enhalor International Tech Co., Ltd. (Beijing, China).
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to the manufacturer's instructions. According to the reference (Bu 
et al., 2019), the primers were designed and showed in Table 2. β-
actin was used as the internal control gene. Real-time PCR assays 
were performed on Applied Biosystems® 7500 (USA) in a final 
volume of 20  μl with 2 × TransStart® Top Green qPCR SuperMix 
(TransGen Biotech, China) and ROX Reference Dye Ⅱ following the 
manufacturer's instruction. The real-time PCR condition uses the 
following temperature profile: 30 s at 94°C, 5 s at 94°C for 40 cycles, 
30 s at 60°C. The gene expression level was determined by 2−ΔΔCT 
method (Livak & Schmittgen, 2001).

2.8  |  Statistical analysis

Data in this paper were statistical analysed by SPSS 25, and the re-
sults are presented as means ± standard error of means (SEM) with 
superscript letters indicating differences between groups. All data 
were checked for homogeneity of variance using Levene's equal 
variance test. One-way analysis of variance (ANOVA) followed by 
Duncan's multiple comparison test was chosen to determine the 
significant differences among the means when the data met the ho-
mogeneity of variance. In addition, the Kruskal–Wallis test was used 
to determine the significant differences among the means when the 
data did not pass homogeneity of variance test. The value of statisti-
cal significance was set at p < .05.

3  |  RESULTS

3.1  |  Growth

The growth performance parameters in different groups are 
shown in Table 3. As expected, there was no difference in the ini-
tial body weight among three groups. After feeding trial, final body 

weight, weight gain (WG), feed intake (FI) and specific growth rate 
(SGR) in YC+CCl4 group were significantly higher than Control and 
CCl4  groups (p <  .05). And the survival rate (SR) and feed conver-
sion ratio (FCR) were not significantly different among three groups 
(p > .05).

3.2  |  Histological observation of liver

Regular morphological structure of liver tissue was observed in the 
control group (Figure 1A). The administration of CCl4 caused his-
topathological changes in the liver such as hepatocyte swelling, 
vacuolar degeneration, necrosis and nuclei shifting to the cellular pe-
riphery. (Figure 1B). Meanwhile, the structure of cell membrane was 
incomplete in CCl4 group. However, fish fed yeast culture showed a 
lower occurrence rate of above histopathological symptoms com-
pared with those fish in CCl4 group (Figure 1C).

3.3  |  ALT and AST activities

Plasma ALT and AST activities are shown in Figure 2. After treated 
with CCl4 for 48 h, the plasma activities of AST (p >  .05) and ALT 
(p < .05) in CCl4 group were higher than that in Control group, and ALT 
activity was significantly different between the above-mentioned 
two groups. Compared with CCl4 group, the AST and ALT activities 
in YC+CCl4 group were reduced, but AST activity in YC+CCl4 group 
was significantly lower than that in CCl4 group (p < .05).

3.4  |  Antioxidant capacity

As shown in Table 4, the MDA content in CCl4 group was significantly 
increased than the Control group after treated with CCl4 (p < .05). 

TA B L E  2  Primer utilized for gene expression analysis (qPCR)

Primer names Sequence (5′-3′) Product (bp) Tm (°C) Reference or accession number

TLR2-F
TLR2-R

TTGTACAGCTGGATGAGTTG
TGTCGTCAGTGAAATGTCTC

206 54 Bu et al. (2019)

MyD88-F
MyD88-R

TCAGACAGCTGGAGCAGACA
CGCTGGTGATGGTCCAAACA

93 59 Bu et al. (2019)

NF-κB p65-F
NF-κB p65-R

AAGAACCAGCCATACAAGCCACAC
TCAGGCAGGTCCGCTTCGTAG

83 60 Bu et al. (2019)

IL-1β-F
IL-1β-R

CCTGAACACCTTCGAGTCGG
AGGTGGCTGGTTTGCTGATT

102 58 Bu et al. (2019)

IL-8-F
IL-8-R

ATCGAAGGAAAAGCAGAGCG
CTTTGCACAGGAGCCACTTG

111 57 Bu et al. (2019)

Hsp70-F
Hsp70-R

GACTGTCCTGATCAAACGCAAC
TGGCTCTTTCACCCTCATACACG

116 59 XM027173973

β-actin-F
β-actin-R

CCTCCGTCTGGATTTGGCTG
TCAAGGGCGACGTAGCAGAG

141 60 Bu et al. (2019)

Abbreviations: Hsp70, heat shock protein 70; IL-1β, interleukin-1β; IL-8, interleukin-8; MyD88, myeloid differentiation factor 88; NF-κB p65, nuclear 
factor kappa-B p65; TLR2, toll-like receptor 2.
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MDA content in YC+CCl4 group was reduced than that in CCl4 group, 
but there was no significant difference (p > .05). The determination 
of liver SOD activity showed that the activity in CCl4 group was sig-
nificantly reduced compared with that in Control group (p  <  .05). 
But the activity of SOD in YC+CCl4 group was significantly higher 

than that in CCl4 group (p < .05). Simultaneously, there was no sig-
nificant difference in the GPX activity among three groups (p > .05), 
but there was an improvement for that of fish in YC+CCl4 group 
compared with that of fish in CCl4 group. Those results showed that 
dietary yeast culture supplementation could alleviate Pseudobagrus 
ussuriensis liver damage induced by CCl4 to a certain extent, which 
may be related to its functions of anti-stress ability and anti-lipid 
peroxidation.

3.5  |  Immune ability

Compared with control group, the lysozyme activity in CCl4 group 
was significantly increased (p <  .05), while the activity in YC+CCl4 
group was significantly decreased compared with that in CCl4 group 
(p < .05) (Figure 3). The IgM (p < .05) and ACH50 (p > .05) content 
in CCl4 group was decreased compared with the control group. But 
compared with CCl4 group, the plasma ACH50 in YC+CCl4 group 
was significantly increased and IgM content also increased with no 
significant difference. There were no significant differences in AKP 
activity among three groups (p > .05).

3.6  |  Gene expression

After treated with CCl4, the expression levels of hepatic TLR2, 
MyD88 and NF-κBp65 gene in CCl4 group were significantly in-
creased compared with Control group (p  <  .05) (Figure 4). The 

TA B L E  3  Growth performance of Pseudobagras ussuriensis in 
different groups

Index Control CCl4 YC+CCl4

IBW (g)a  180.15 ± 0.55 180.7 ± 0.00 180.46 ± 0.38

FBW (g)b  409.43 ± 5.13b  405.30 ± 1.00b  448.10 ± 3.77a 

WG (%)c  127.28 ± 3.54b  124.29 ± 0.55b  148.29 ± 1.56a 

SGR (%)d  1.47 ± 0.03b  1.44 ± 0.04b  1.62 ± 0.01a 

SR (%)e  95.00 ± 1.67 98.33 ± 1.67 94.44 ± 2.93

FI (%)f  1.47 ± 0.01b  1.50 ± 0.04b  1.57 ± 0.01a 

FCR g  1.22 ± 0.02 1.27 ± 0.03 1.19 ± 0.01

Note: Data represent as mean ± SEM. Mean with different superscripts 
in the same row is significantly different (p < .05).
aIBW, initial body weight.
bFBW, final body weight.
cWG, weight gain (%) = 100 × (final body weight - initial body weight) / 
(initial body weight).
dSGR, Specific growth rate (%) = 100 × (Ln (final body weight) – Ln 
(initial body weight))/days.
eSR, Survival Rate (%) = 100 × final fish number / initial fish number.
fFI, Feed intake (% per day) = 100× dry feed intake / [(initial body 
weight + final body weight) / 2 × t].
gFCR: Feed conversion ratio = feed consumed / weight gain.

F I G U R E  1  (A) Liver structure of fish in control group: (a) hepatocyte (H & E). (B) Liver structure of fish in CCl4 group: (a) cell membrane 
lysis, (b) karyolysis, (c) hydropic degenerations, (d) nuclei shifting to the cellular periphery. (C) Liver structure of fish in YC+CCl4 group: (a) 
hydropic degenerations, (b) nuclei shifting to the cellular periphery, (c) karyolysis. Scale bar = 100 μm

(a) (b) (c)

F I G U R E  2  The effect of dietary YC on 
ALT and AST activities in plasma of CCl4-
treated Pseudobagrus ussuriensis. Vertical 
bars represented the means ± SEM of 
three replicates. Different letters in each 
figure represented significant difference 
among dietary treatments (p < .05). ALT, 
alanine transaminase; AST, aspartate 
transaminase
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decrease of TLR2, MyD88 and NF-κBp65 was found in YC+CCl4 
group compared with CCl4 group, but hepatic NF-κBp65 gene ex-
pression level in YC+CCl4 group was significantly reduced (p < .05). 
The expression levels of hepatic IL-8 and Hsp70 gene in CCl4 group 
was significantly increased compared with the Control group 
(p < .05). But compared with CCl4 group, the hepatic IL-8 and Hsp70 
gene in YC+CCl4 group were significantly decreased (p <  .05). The 
hepatic 1L-1β gene expression level was not significantly different 
among three groups (p > .05).

4  |  DISCUSSION

The aim of this study was to investigate the hypothesis that yeast 
culture as an additive may have a protective effect against CCl4-
induced liver damage in Pseudobagrus ussuriensis. CCl4 is one of the 
most commonly used hepatotoxins in the study of acute liver in-
jury. Metabolism of CCl4 produces the trichloromethyl free radical 

(CCl3•) and trichloromethyl peroxy radical (CCl3OO•) (Dong et al., 
2013). And CCl3OO• attacks and destroys polyunsaturated fatty 
acids, which initiates the chain reaction of lipid peroxidation result-
ing in the exudation of soluble cytoplasmic enzymes and increased 
serum AST and ALT (Al-Harbi et al., 2014). Serum enzymes such as 
AST and ALT are employed in the evaluation of hepatic disorders, 
and the increase of these enzyme activities in serum reflects acute 
liver damage and inflammatory hepatocellular disorder. The present 
results showed that CCl4 administration caused severe acute liver 
damage in Pseudobagrus ussuriensis as evidenced by elevation of 
serum ALT (p  <  .05) and AST (p  >  .05) activities and classical his-
topathological changes, which is similar with previous reports that 
CCl4 solution (3  ml/kg b.w., 1:1 in groundnut oil) can increase the 
activities of serum ALT and serum AST and change the hepatic his-
topathology in rat (Singh et al., 2008). However, when YC was sup-
plemented in groups exposed to CCl4, it was seen that serum AST 
activities dropped to a level similar to that of control in this study. 
Similar results were also reported by Bu et al. (2020), in which Ussuri 

Index Control CCl4 YC+CCl4

SOD (U mg−1) 23.39 ± 0.69a 20.46 ± 0.86b 23.32 ± 0.80a

MDA (nmol mg−1) 0.24 ± 0.02b 0.37 ± 0.02a 0.32 ± 0.01a

GPX (U mg−1) 20.56 ± 0.90 17.62 ± 0.61 19.46 ± 2.43

Note: Data represent as mean ± SEM. Mean with different superscripts in the same row is 
significantly different (p < .05).

TA B L E  4  The effect of YC on 
antioxidant capacity in liver of CCl4-
treated Pseudobagrus ussuriensis

F I G U R E  3  The effect of YC on immune ability of hepatic injury induced by CCl4 in Pseudobagrus ussuriensis. Vertical bars represented 
the means ± SEM of three replicates. Different letters in each figure represented significant difference among dietary treatments (p < .05). 
ACH50, alternative complement pathway activity; ALB, albumin; AKP, alkaline phosphatase; IgM, immunoglobulin M; LZM, lysozyme



    |  7TAO et al.

catfish (Pseudobagrus ussuriensis) prefed diet with 10 g/kg yeast cul-
ture significantly decreased serum AST activities and alleviate the 
gossypol-induced liver damage.

The first line of defence against free radical consists of various 
endogenous antioxidants such as SOD, GPX, which maintains a com-
plex immune response in animals. Their activities could reflect the 
antioxidant capacity for removing superoxide radicals and assisting 
the recovery of normal physiological functions of the cells (Yousefi 
et al., 2020). CCl4 metabolite CCl3O2• could suppress SOD, GPX ac-
tivities, resulting in the accumulation of large amounts of radicals 
and the lipid peroxidation product MDA, which lead liver cell necro-
sis, further aggravating liver damage. Previous study reports that the 
fish (Cyprinus carpio var. Jian) treated with CCl4 can significantly in-
crease hepatic MDA level and reduce SOD activity (Cao et al., 2015). 
In this study, CCl4 had a decreasing effect on the activities of hepatic 
SOD and GPX; nevertheless, incorporation of yeast culture into 
diets restored the activities of antioxidant enzymes and resulted in 
a decline in the MDA content. Some studies have indicated that oli-
gosaccharides, glutathione, vitamins and β-glucan could increase the 
antioxidant activity and regulate immune response (Liu et al., 2020; 
Lu et al., 2019; Takavar & Mandieh, 2019). Thus, it can be presumed 
that the protective effect of YC against CCl4-induced liver damage in 
Pseudobagrus ussuriensi may be related to the mannose oligosaccha-
rides (MOS), vitamins, β-glucan, glutathione and other antioxidants 
in yeast culture. The antioxidative effect of those substances (oligo-
saccharides, vitamins, β-glucan and glutathione) has been reported 
in crabs (Eriocheir sinensis), gibel carp (Carassius auratus gibelio CAS) 
and yellow drum (Nibea albiflora), and these studies have demon-
strated that the above-mentioned substances can improve antioxi-
dant ability by increasing SOD and GPX activities and reducing MDA 
production (Liu et al., 2020; Lu et al., 2019; Wang et al., 2019; Zhang 
et al., 2018).

The innate immune system of fish is an essential defence mecha-
nism providing the first line of defence to against pathogens for the 
host (Ke & Zhang, 2019). Recently, in order to maintain fish health 
and improve disease resistance, immunostimulants, probiotics and 
nucleotides have been used as dietary additives to improve the im-
munity and resist the diseases (Vallejos-Vidal et al., 2016; Zhao et al., 

2020). In this paper, indicators of innate immunity including plasma 
IgM, ACH50, LZM, AKP and ALB were evaluated to explore the ad-
verse influence of CCl4 on immunity of Pseudobagrus ussuriensi and 
the effects of yeast culture against immune damage induced by CCl4.

IgM level and ACH50 activity as good biomarkers for evaluating 
the immune status may be adversely affected by toxicants in aquatic 
animals (Sharifian et al., 2015; Wang et al., 2014). In the current 
study, a reduction in IgM and ACH50 was found in the group ex-
posed to CCl4 alone, which may be considered as a damage to im-
mune system. These results provide further support for the fact that 
CCl4 may lead to the disorder of immune system in Pseudobagrus 
ussuriensi. Furthermore, fish in YC+CCl4 group had higher IgM lev-
els (p > .05) and ACH50 activities (p < .05) than fish in CCl4 group, 
suggesting that fish prefed yeast culture could relieve the immune 
damage response induced by CCl4 for Pseudobagrus ussuriensi. These 
results probably were demonstrated by the positive effect from the 
dietary addition of β-glucan as the main component of yeast cul-
ture, which could stimulate the complement activities. Some studies 
showed that the fish (Oreochromis niloticus) fed β-glucan had signifi-
cantly higher ACH50 and IgM contents than the fish in control group 
(Amphan et al., 2018; El-Murr et al., 2019).

Albumin, the most abundant plasma protein, is primarily synthe-
sized in liver. In this paper, fish prefed 20 g/kg yeast culture had a 
higher ALB level than fish in Control and CCl4 groups. Similar re-
sults were also reported by Hardy et al. (2020), in which juvenile 
Nile tilapia (Oreochromis niloticus) fed diet with 10 or 30 g/kg yeast 
hydrolysate had markedly higher ALB than those of fish fed diets 
without yeast hydrolysate. Albumin also acts as a leading carrier for 
some cations, nutrients, hormones and metabolites and plays a role 
in tissue repairment. The body's physiological function would be af-
fected by the concentration of ALB in plasma with the transporta-
tion of nutrients and hormones to the tissues and organs according 
to the requirement. Thus, we assume that the elevation of ALB was 
also responsible for the alleviation of liver damage, where it would 
accelerate the transportation of nutrients and hormones to meet the 
requirements of metabolic activities.

Moreover, lysozyme as a bactericidal enzyme is an important 
component of the immune system that can degrade pathogenic 

F I G U R E  4  The effect of YC on hepatic inflammation related genes expression in CCl4-treated Pseudobagrus ussuriensis. Vertical bars 
represented the means ± SEM of three replicates. Different letters in each figure represented significant difference among dietary 
treatments (p < .05). IL-1β, interleukin-1β; IL-8, interleukin-8; MyD88, myeloid differentiation factor 88; NF-κB p65, nuclear transcription 
factor κB p65; TLR2, toll-like receptor 2
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bacteria by breaking down their structure of cell wall (Hauge et al., 
2002; Lushchak et al., 2001). In this study, the fish in CCl4 group had 
higher LZM activity than fish in Control group. Similar results were 
also reported by Demers and Bayne (1997), in which the plasma ly-
sozyme activity was significantly increased briefly in Rainbow trout 
(Oncorhynchus mykiss) treated with handling stressor, and the reason 
might be attributed to that the acute stress may help humoral com-
ponents of innate defences where it is most needed.

Several researches have indicated that TLRs interact with my-
eloid differentiation factor 88 (MyD88), an adaptor molecule shared 
by all the members of TLRs except for TLR3, 21, 22 to activate NF-
κB and induce several types of cytokines, such as interleukin, tu-
mour necrosis factor and chemokines (Chou et al., 2019; Montero 
et al., 2008; Seki et al., 2005). Previous study indicated that TLR2 
and its downstream signalling are stimulated by CCl4-induced oxida-
tive stress, as determined by the remarkable up-regulation of TLR2, 
MyD88 and NF-κB mRNA expression in rat (Gan et al., 2018). In pres-
ent study, we found that the expression of TLR2, MyD88 and NF-
κBp65 mRNA was significantly enhanced in CCl4 group compared 
with Control group, and YC supplementation reversed the CCl4-
induced up-regulations of TLR2, MyD88 and NF-κBp65. Those data 
indicated that dietary yeast culture supplementation may relieve the 
hepatic damage of Ussuri catfish through inhibiting TLR2/NF-κB 
signalling pathway. NF-κB a transcription factor could up-regulate 
the release of inflammatory cytokines including IL-8 and IL-1β, which 
may further perpetuate the inflammatory cascades resulting in liver 
damage (Jung et al., 1995). In this paper, fish in CCl4 group had higher 
hepatic IL-1β (p > .05) and IL-8 (p < .05) mRNA expression than fish 
in Control group; however, hepatic IL-1β (p > .05) and IL-8 (p < .05) 
mRNA expressions of fish in YC+CCl4 group were lower than fish in 
CCl4 group, suggesting that CCl4 may have a stimulatory action upon 
proinflammatory processes and dietary yeast culture supplementa-
tion, to some extent, inhibited the inflammatory response.

Heat shock proteins 70 (HSP70), a member of heat shock pro-
teins (HSPs) family, are engaged in overall proteome maintenance 
while under conditions of environmental alterations (Song et al., 
2007). At an early stage after CCl4 administration, transient increases 
in the gene expression of the stress-inducible HSP70 are preceded 
(Schiaffonati & Tiberio, 1997). Furthermore, Song et al. (2007) re-
ported that HSP70 knock out mice injected with CCl4 showed higher 
alanine transaminase level and a more severe degree of neutrophilic 
infiltration and necrosis than those of wild-type mice injected with 
CCl4. In this study, the significant increase was observed in case of he-
patic HSP70 mRNA in CCl4 group (p < .05), and hepatic HSP70 mRNA 
expression of fish in YC+CCl4 group was significantly lower than fish 
in CCl4 group (p < .05). These data suggested that yeast culture could 
have protective role against the hepatic damage induced by CCl4.

5  |  CONCLUSIONS

In conclusion, fish injected CCl4 olive oil solution could induce in-
flammatory response, reduce antioxidant capacity and destroy 

hepatocyte structure. Dietary yeast culture supplementation could 
relieve the oxidative stress, immune damage and liver injury induced 
by CCl4 and could also suppress CCl4-induced inflammation through 
inhibiting the TLR2/NF-κB signalling pathway.
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